翻訳と辞書
Words near each other
・ Mulungu, Paraíba
・ Mulunguni
・ Mulungushi
・ Mulungushi Dam
・ Mulungushi River
・ Mulungushi University
・ Mulungwishi
・ Mulur
・ Mulux
・ Mulvane
・ Multivariate
・ Multivariate adaptive regression splines
・ Multivariate analysis
・ Multivariate analysis of variance
・ Multivariate Behavioral Research
Multivariate Behrens–Fisher problem
・ Multivariate cryptography
・ Multivariate ENSO index
・ Multivariate gamma function
・ Multivariate interpolation
・ Multivariate kernel density estimation
・ Multivariate landing page optimization
・ Multivariate mutual information
・ Multivariate normal distribution
・ Multivariate optical computing
・ Multivariate optical element
・ Multivariate Pareto distribution
・ Multivariate probit model
・ Multivariate random variable
・ Multivariate stable distribution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Multivariate Behrens–Fisher problem : ウィキペディア英語版
Multivariate Behrens–Fisher problem
In statistics, the multivariate Behrens–Fisher problem is the problem of testing for the equality of means from two multivariate normal distributions when the covariance matrices are unknown and possibly not equal. Since this is a generalization of the univariate Behrens-Fisher problem, it inherits all of the difficulties that arise in the univariate problem.
==Notation and problem formulation==
Let X_ \sim \mathcal_p(\mu_i,\, \Sigma_i) \ \ (j=1,\dots,n_i; \ \ i=1,2)\ be independent random samples from two p-variate normal distributions with unknown mean vectors \mu_i and unknown dispersion matrices \Sigma_i. The index i refers to the first or second population, and the jth observation from the ith population is X_.
The multivariate Behrens–Fisher problem is to test the null hypothesis H_0 that the means are equal versus the alternative H_1 of non-equality:
: H_0 : \mu_1 = \mu_2 \ \ \text \ \ H_1 : \mu_1 \neq \mu_2.

Define some statistics, which are used in the various attempts to solve the multivariate Behrens–Fisher problem, by
:
\begin
\bar &= \frac \sum_^ X_, \\
A_i &= \sum_^ (X_ - \bar)(X_ - \bar)', \\
S_i &= \frac A_i, \\
\tilde &= \fracS_i, \\
\tilde &= \tilde + \tilde, \quad \text \\
T^2 & = (\bar - \bar)'\tilde^(\bar - \bar).
\end

The sample means \bar and sum-of-squares matrices A_i are sufficient for the multivariate normal parameters \mu_i, \Sigma_i,\ (i=1,2), so it suffices to perform inference be based on just these statistics. The distributions of \bar and A_i are independent and are, respectively, multivariate normal and Wishart:〔
:
\begin
\bar &\sim \mathcal_p \left(\mu_i, \Sigma_i/n_i \right), \\
A_i &\sim W_p(\Sigma_i, n_i - 1).
\end


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Multivariate Behrens–Fisher problem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.